Item 4.7.10.c.

If you add up all the vertices from each polygon separately, we get a total of 64. This is not divisible by 3, so it cannot be that each vertex belongs to exactly 3 faces. Could they all belong to 4 faces? That would mean there were \(64/4 = 16\) vertices, but we know from Euler's formula that there must be 18 vertices. We can write \(64 = 3x + 4y\) and solve for \(x\) and \(y\) (as integers). We get that there must be 10 vertices with degree 4 and 8 with degree 3. (Note the number of faces joined at a vertex is equal to its degree in graph theoretic terms.)

in-context