Paragraph

Another (bad) idea: we need to pick three elements to be in our subset. There are 5 elements to choose from. So there are 5 choices for the first element, and for each of those 4 choices for the second, and then 3 for the third (last) element. The multiplicative principle would say then that there are a total of \(5 \cdot 4 \cdot 3 = 60\) ways to select the 3-element subset. But this cannot be correct (\(60 > 32\) for one thing). One of the outcomes we would get from these choices would be the set \(\{3,2,5\}\text{,}\) by choosing the element 3 first, then the element 2, then the element 5. Another outcome would be \(\{5,2,3\}\) by choosing the element 5 first, then the element 2, then the element 3. But these are the same set! We can correct this by dividing: for each set of three elements, there are 6 outcomes counted among our 60 (since there are 3 choices for which element we list first, 2 for which we list second, and 1 for which we list last). So we expect there to be 10 3-element subsets of \(A\text{.}\)

in-context