Paragraph

Let's think a bit about how we could find the value of \(P(n)\) for some specific \(n\) (the “value” will be either \(T\) or \(F\)). How did we find the value of the \(n\)th term of a sequence of numbers? How did we find \(a_n\text{?}\) There were two ways we could do this: either there was a closed formula for \(a_n\text{,}\) so we could plug in \(n\) into the formula and get our output value, or we had a recursive definition for the sequence, so we could use the previous terms of the sequence to compute the \(n\)th term. When dealing with sequences of statements, we could use either of these techniques as well. Maybe there is a way to use \(n\) itself to determine whether we can make \(n\) cents of postage. That would be something like a closed formula. Or instead we could use the previous terms in the sequence (of statements) to determine whether we can make \(n\) cents of postage. That is, if we know the value of \(P(n-1)\text{,}\) can we get from that to the value of \(P(n)\text{?}\) That would be something like a recursive definition for the sequence. Remember, finding recursive definitions for sequences was often easier than finding closed formulas. The same is true here.

in-context