Paragraph

We could go on and on and on about different proof styles (we haven't even mentioned induction or combinatorial proofs here), but instead we will end with one final useful technique: proof by cases. The idea is to prove that \(P\) is true by proving that \(Q \imp P\) and \(\neg Q \imp P\) for some statement \(Q\text{.}\) So no matter what, whether or not \(Q\) is true, we know that \(P\) is true. In fact, we could generalize this. Suppose we want to prove \(P\text{.}\) We know that at least one of the statements \(Q_1, Q_2, \ldots, Q_n\) is true. If we can show that \(Q_1 \imp P\) and \(Q_2 \imp P\) and so on all the way to \(Q_n \imp P\text{,}\) then we can conclude \(P\text{.}\) The key thing is that we want to be sure that one of our cases (the \(Q_i\)'s) must be true no matter what.

in-context