Paragraph

Say the last polyhedron has \(n\) edges, and also \(n\) vertices. The total number of edges the polyhedron has then is \((7 \cdot 3 + 4 \cdot 4 + n)/2 = (37 + n)/2\text{.}\) In particular, we know the last face must have an odd number of edges. We also have that \(v = 11 \text{.}\) By Euler's formula, we have \(11 - (37+n)/2 + 12 = 2\text{,}\) and solving for \(n\) we get \(n = 5\text{,}\) so the last face is a pentagon.

in-context