Proof.

By the definition of \({n \choose k}\text{,}\) we have

\begin{equation*} {n-1 \choose k-1} = \frac{(n-1)!}{(n-1-(k-1))!(k-1)!} = \frac{(n-1)!}{(n-k)!(k-1)!} \end{equation*}

and

\begin{equation*} {n-1 \choose k} = \frac{(n-1)!}{(n-1-k)!k!}\text{.} \end{equation*}

Thus, starting with the right-hand side of the equation:

\begin{align*} {n-1 \choose k-1} + {n-1 \choose k} \amp = \frac{(n-1)!}{(n-k)!(k-1)!}+ \frac{(n-1)!}{(n-1-k)!\,k!}\\ \amp = \frac{(n-1)!k}{(n-k)!\,k!} + \frac{(n-1)!(n-k)}{(n-k)!\,k!}\\ \amp = \frac{(n-1)!(k+n-k)}{(n-k)!\,k!}\\ \amp = \frac{n!}{(n-k)!\, k!}\\ \amp = {n \choose k}\text{.} \end{align*}

The second line (where the common denominator is found) works because \(k(k-1)! = k!\) and \((n-k)(n-k-1)! = (n-k)!\text{.}\)