Solution 1.4.7.1.

Proof.

Question: You have a large container filled with ping-pong balls, all with a different number on them. You must select \(k\) of the balls, putting two of them in a jar and the others in a box. How many ways can you do this?

Answer 1: First select 2 of the \(n\) balls to put in the jar. Then select \(k-2\) of the remaining \(n-2\) balls to put in the box. The first task can be completed in \({n \choose 2}\) different ways, the second task in \({n-2 \choose k-2}\) ways. Thus there are \({n \choose 2}{n-2 \choose k-2}\) ways to select the balls.

Answer 2: First select \(k\) balls from the \(n\) in the container. Then pick 2 of the \(k\) balls you picked to put in the jar, placing the remaining \(k-2\) in the box. The first task can be completed in \({n \choose k}\) ways, the second task in \({k \choose 2}\) ways. Thus there are \({n \choose k}{k \choose 2}\) ways to select the balls.

Since both answers count the same thing, they must be equal and the identity is established.

in-context