Again, we have a sum of an arithmetic sequence. How many terms are in the sequence? Clearly each term in the sequence has the form \(4k -2\) (as evidenced by the last term). For which values of \(k\) though? To get 6, \(k = 2\text{.}\) To get \(4n-2\) take \(k = n\text{.}\) So to find the number of terms, we must count the number of integers in the range \(2,3,\ldots, n\text{.}\) This is \(n-1\text{.}\) (There are \(n\) numbers from 1 to \(n\text{,}\) so one less if we start with 2.)

Now reverse and add:

\(S =\) \(6\) \(+\) \(10\) \(+ \cdots +\) \(4n-6\) \(+\) \(4n-2\)
\(+ \quad S =\) \(4n-2\) \(+\) \(4n-6\) \(+ \cdots +\) \(10\) \(+\) 6
\(2S =\) \(4n+4\) \(+\) \(4n+4\) \(+ \cdots +\) \(4n+4\) \(+\) \(4n+4\)

Since there are \(n-1\) terms, we get

\begin{equation*} 2S = (n-1)(4n+4)\qquad \mbox{ so } \qquad S = \frac{(n-1)(4n+4)}{2}\text{.} \end{equation*}