Proof.

Let \(P(n)\) be the statement that \(n + 3 \lt n + 7\text{.}\) We will prove that \(P(n)\) is true for all \(n \in \N\text{.}\) First, note that the base case holds: \(0+3 \lt 0+7\text{.}\) Now assume for induction that \(P(k)\) is true. That is, \(k+3 \lt k+7\text{.}\) We must show that \(P(k+1)\) is true. Now since \(k + 3 \lt k + 7\text{,}\) add 1 to both sides. This gives \(k + 3 + 1 \lt k + 7 + 1\text{.}\) Regrouping \((k+1) + 3 \lt (k+1) + 7\text{.}\) But this is simply \(P(k+1)\text{.}\) Thus by the principle of mathematical induction \(P(n)\) is true for all \(n \in \N\text{.}\)