Symbol |
Description |
Location |
\(P, Q, R, S, \ldots\) |
propositional (sentential) variables |
Paragraph |
\(\wedge\) |
logical “and” (conjunction) |
Item |
\(\vee\) |
logical “or” (disjunction) |
Item |
\(\neg\) |
logical negation |
Item |
\(\exists\) |
existential quantifier |
Subsection |
\(\forall\) |
universal quantifier |
Subsection |
\(\emptyset\) |
the empty set |
Item |
\(\U\) |
universal set (domain of discourse) |
Item |
\(\N\) |
the set of natural numbers |
Item |
\(\Z\) |
the set of integers |
Item |
\(\Q\) |
the set of rational numbers |
Item |
\(\R\) |
the set of real numbers |
Item |
\(\pow(A)\) |
the power set of \(A\) |
Item |
\(\{, \}\) |
braces, to contain set elements. |
Item |
\(\st\) |
“such that” |
Item |
\(\in\) |
“is an element of” |
Item |
\(\subseteq\) |
“is a subset of” |
Item |
\(\subset\) |
“is a proper subset of” |
Item |
\(\cap\) |
set intersection |
Item |
\(\cup\) |
set union |
Item |
\(\times\) |
Cartesian product |
Item |
\(\setminus\) |
set difference |
Item |
\(\bar{A}\) |
the complement of \(A\) |
Item |
\(\card{A}\) |
cardinality (size) of \(A\) |
Item |
\(A\times B\) |
the Cartesian product of \(A\) and \(B\) |
Paragraph |
\(f(A)\) |
the image of \(A\) under \(f\text{.}\) |
Paragraph |
\(f\inv(B)\) |
the inverse image of \(B\) under \(f\text{.}\) |
Paragraph |
\(\B^n\) |
the set of length \(n\) bit strings |
Item |
\(\B^n_k\) |
the set of legth \(n\) bit strings with weight \(k\text{.}\) |
Item |
\((a_n)_{n \in \N}\) |
the sequence \(a_0, a_1, a_2, \ldots\) |
Paragraph |
\(T_n\) |
the \(n\)th triangular number |
Item |
\(F_n\) |
the \(n\)th Fibonacci number |
Exercise 2.1.5 |
\(\Delta^k\) |
the \(k\)th differences of a sequence |
Paragraph |
\(P(n)\) |
the \(n\)th case we are trying to prove by induction |
Paragraph |
\(42\) |
the ultimate answer to life, etc. |
Paragraph |
\(\therefore\) |
“therefore” |
Paragraph |
\(K_n\) |
the complete graph on \(n\) vertices |
Paragraph |
\(K_n\) |
the complete graph on \(n\) vertices. |
Item |
\(K_{m,n}\) |
the complete bipartite graph of of \(m\) and \(n\) vertices. |
Item |
\(C_n\) |
the cycle on \(n\) vertices |
Item |
\(P_n\) |
the path on \(n+1\) vertices |
Item |
\(\chi(G)\) |
the chromatic number of \(G\) |
Paragraph |
\(\Delta(G)\) |
the maximum degree in \(G\) |
Paragraph |
\(\chi'(G)\) |
the chromatic index of \(G\) |
Paragraph |
\(N(S)\) |
the set of neighbors of \(S\text{.}\) |
Paragraph |