# AppendixCList of Symbols

Symbol Description Location
$P, Q, R, S, \ldots$ propositional (sentential) variables Paragraph
$\wedge$ logical “and” (conjunction) Item
$\vee$ logical “or” (disjunction) Item
$\neg$ logical negation Item
$\exists$ existential quantifier Subsection
$\forall$ universal quantifier Subsection
$\emptyset$ the empty set Item
$\U$ universal set (domain of discourse) Item
$\N$ the set of natural numbers Item
$\Z$ the set of integers Item
$\Q$ the set of rational numbers Item
$\R$ the set of real numbers Item
$\pow(A)$ the power set of $A$ Item
$\{, \}$ braces, to contain set elements. Item
$\st$ “such that” Item
$\in$ “is an element of” Item
$\subseteq$ “is a subset of” Item
$\subset$ “is a proper subset of” Item
$\cap$ set intersection Item
$\cup$ set union Item
$\times$ Cartesian product Item
$\setminus$ set difference Item
$\bar{A}$ the complement of $A$ Item
$\card{A}$ cardinality (size) of $A$ Item
$A\times B$ the Cartesian product of $A$ and $B$ Paragraph
$f(A)$ the image of $A$ under $f\text{.}$ Paragraph
$f\inv(B)$ the inverse image of $B$ under $f\text{.}$ Paragraph
$\B^n$ the set of length $n$ bit strings Item
$\B^n_k$ the set of legth $n$ bit strings with weight $k\text{.}$ Item
$(a_n)_{n \in \N}$ the sequence $a_0, a_1, a_2, \ldots$ Paragraph
$T_n$ the $n$th triangular number Item
$F_n$ the $n$th Fibonacci number Exercise 2.1.5
$\Delta^k$ the $k$th differences of a sequence Paragraph
$P(n)$ the $n$th case we are trying to prove by induction Paragraph
$42$ the ultimate answer to life, etc. Paragraph
$\therefore$ “therefore” Paragraph
$K_n$ the complete graph on $n$ vertices Paragraph
$K_n$ the complete graph on $n$ vertices. Item
$K_{m,n}$ the complete bipartite graph of of $m$ and $n$ vertices. Item
$C_n$ the cycle on $n$ vertices Item
$P_n$ the path on $n+1$ vertices Item
$\chi(G)$ the chromatic number of $G$ Paragraph
$\Delta(G)$ the maximum degree in $G$ Paragraph
$\chi'(G)$ the chromatic index of $G$ Paragraph
$N(S)$ the set of neighbors of $S\text{.}$ Paragraph