Skip to main content
\(\def\d{\displaystyle} \def\course{Math 228} \newcommand{\f}[1]{\mathfrak #1} \newcommand{\s}[1]{\mathscr #1} \def\N{\mathbb N} \def\B{\mathbf{B}} \def\circleA{(-.5,0) circle (1)} \def\Z{\mathbb Z} \def\circleAlabel{(-1.5,.6) node[above]{$A$}} \def\Q{\mathbb Q} \def\circleB{(.5,0) circle (1)} \def\R{\mathbb R} \def\circleBlabel{(1.5,.6) node[above]{$B$}} \def\C{\mathbb C} \def\circleC{(0,-1) circle (1)} \def\F{\mathbb F} \def\circleClabel{(.5,-2) node[right]{$C$}} \def\A{\mathbb A} \def\twosetbox{(-2,-1.5) rectangle (2,1.5)} \def\X{\mathbb X} \def\threesetbox{(-2,-2.5) rectangle (2,1.5)} \def\E{\mathbb E} \def\O{\mathbb O} \def\U{\mathcal U} \def\pow{\mathcal P} \def\inv{^{-1}} \def\nrml{\triangleleft} \def\st{:} \def\~{\widetilde} \def\rem{\mathcal R} \def\sigalg{$\sigma$-algebra } \def\Gal{\mbox{Gal}} \def\iff{\leftrightarrow} \def\Iff{\Leftrightarrow} \def\land{\wedge} \def\And{\bigwedge} \def\entry{\entry} \def\AAnd{\d\bigwedge\mkern-18mu\bigwedge} \def\Vee{\bigvee} \def\VVee{\d\Vee\mkern-18mu\Vee} \def\imp{\rightarrow} \def\Imp{\Rightarrow} \def\Fi{\Leftarrow} \def\var{\mbox{var}} \def\Th{\mbox{Th}} \def\entry{\entry} \def\sat{\mbox{Sat}} \def\con{\mbox{Con}} \def\iffmodels{\bmodels\models} \def\dbland{\bigwedge \!\!\bigwedge} \def\dom{\mbox{dom}} \def\rng{\mbox{range}} \def\isom{\cong} \DeclareMathOperator{\wgt}{wgt} \newcommand{\vtx}[2]{node[fill,circle,inner sep=0pt, minimum size=4pt,label=#1:#2]{}} \newcommand{\va}[1]{\vtx{above}{#1}} \newcommand{\vb}[1]{\vtx{below}{#1}} \newcommand{\vr}[1]{\vtx{right}{#1}} \newcommand{\vl}[1]{\vtx{left}{#1}} \renewcommand{\v}{\vtx{above}{}} \def\circleA{(-.5,0) circle (1)} \def\circleAlabel{(-1.5,.6) node[above]{$A$}} \def\circleB{(.5,0) circle (1)} \def\circleBlabel{(1.5,.6) node[above]{$B$}} \def\circleC{(0,-1) circle (1)} \def\circleClabel{(.5,-2) node[right]{$C$}} \def\twosetbox{(-2,-1.4) rectangle (2,1.4)} \def\threesetbox{(-2.5,-2.4) rectangle (2.5,1.4)} \def\ansfilename{practice-answers} \def\shadowprops{{fill=black!50,shadow xshift=0.5ex,shadow yshift=0.5ex,path fading={circle with fuzzy edge 10 percent}}} \newcommand{\hexbox}[3]{ \def\x{-cos{30}*\r*#1+cos{30}*#2*\r*2} \def\y{-\r*#1-sin{30}*\r*#1} \draw (\x,\y) +(90:\r) -- +(30:\r) -- +(-30:\r) -- +(-90:\r) -- +(-150:\r) -- +(150:\r) -- cycle; \draw (\x,\y) node{#3}; } \renewcommand{\bar}{\overline} \newcommand{\card}[1]{\left| #1 \right|} \newcommand{\twoline}[2]{\begin{pmatrix}#1 \\ #2 \end{pmatrix}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

AppendixBList of Symbols

Symbol Description Location
\( P, Q, R, S, \ldots \) propositional (sentential) variables Paragraph
\(\wedge\) logical “and” (conjunction) Item
\(\vee\) logical “or” (disjunction) Item
\(\neg\) logical negation Item
\(\exists\) existential quantifier Subsection
\(\forall\) universal quantifier Subsection
\(\emptyset\) the empty set Item
\(\U\) universal set (domain of discourse) Item
\(\N\) the set of natural numbers Item
\(\Z\) the set of integers Item
\(\Q\) the set of rational numbers Item
\(\R\) the set of real numbers Item
\(\pow(A)\) the power set of \(A\) Item
\(\{, \}\) braces, to contain set elements. Item
\(\st\) “such that” Item
\(\in\) “is an element of” Item
\(\subseteq\) “is a subset of” Item
\( \subset\) “is a proper subset of” Item
\(\cap\) set intersection Item
\(\cup\) set union Item
\(\times\) Cartesian product Item
\(\setminus\) set difference Item
\(\bar{A}\) the complement of \(A\) Item
\(\card{A}\) cardinality (size) of \(A\) Item
\(A\times B\) the Cartesian product of \(A\) and \(B\) Paragraph
\(f\inv(y)\) the complete inverse image of \(y\) under \(f\text{.}\) Paragraph
\(\B^n\) the set of length \(n\) bit strings Item
\(\B^n_k\) the set of legth \(n\) bit strings with weight \(k\text{.}\) Item
\((a_n)_{n \in \N}\) the sequence \(a_0, a_1, a_2, \ldots\) Paragraph
\(T_n\) the \(n\)th triangular number Example 2.1.4
\(F_n\) the \(n\)th Fibonacci number Item 2.1.3.c
\(\Delta^k\) the \(k\)th differences of a sequence Paragraph
\(P(n)\) the \(n\)th case we are trying to prove by induction Paragraph
\(42\) the ultimate answer to life, etc. Paragraph
\(\therefore\) “therefore” Paragraph
\(K_n\) the complete graph on \(n\) vertices Paragraph
\(K_n\) the complete graph on \(n\) vertices. Item
\(K_{m,n}\) the complete bipartite graph of of \(m\) and \(n\) vertices. Item
\(C_n\) the cycle on \(n\) vertices Item
\(P_n\) the path on \(n\) vertices Item
\(\chi(G)\) the chromatic number of \(G\) Paragraph
\(\Delta(G)\) the maximum degree in \(G\) Paragraph
\(\chi'(G)\) the chromatic index of \(G\) Paragraph
\(N(S)\) the set of neighbors of \(S\text{.}\) Paragraph