Skip to main content\(\renewcommand{\d}{\displaystyle}
\newcommand{\N}{\mathbb N}
\newcommand{\B}{\mathbf B}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\U}{\mathcal U}
\newcommand{\pow}{\mathcal P}
\newcommand{\inv}{^{-1}}
\newcommand{\st}{:}
\renewcommand{\iff}{\leftrightarrow}
\newcommand{\Iff}{\Leftrightarrow}
\newcommand{\imp}{\rightarrow}
\newcommand{\Imp}{\Rightarrow}
\newcommand{\isom}{\cong}
\renewcommand{\bar}{\overline}
\newcommand{\card}[1]{\left| #1 \right|}
\newcommand{\twoline}[2]{\begin{pmatrix}#1 \\ #2 \end{pmatrix}}
\newcommand{\vtx}[2]{node[fill,circle,inner sep=0pt, minimum size=4pt,label=#1:#2]{}}
\newcommand{\va}[1]{\vtx{above}{#1}}
\newcommand{\vb}[1]{\vtx{below}{#1}}
\newcommand{\vr}[1]{\vtx{right}{#1}}
\newcommand{\vl}[1]{\vtx{left}{#1}}
\renewcommand{\v}{\vtx{above}{}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix C List of Symbols
Symbol |
Description |
Location |
\(P, Q, R, S, \ldots\) |
propositional (sentential) variables |
Paragraph |
\(\wedge\) |
logical “and” (conjunction) |
Item |
\(\vee\) |
logical “or” (disjunction) |
Item |
\(\neg\) |
logical negation |
Item |
\(\exists\) |
existential quantifier |
Summary |
\(\forall\) |
universal quantifier |
Summary |
\(\emptyset\) |
the empty set |
Item |
\(\U\) |
universe set (domain of discourse) |
Item |
\(\N\) |
the set of natural numbers |
Item |
\(\Z\) |
the set of integers |
Item |
\(\Q\) |
the set of rational numbers |
Item |
\(\R\) |
the set of real numbers |
Item |
\(\pow(A)\) |
the power set of \(A\)
|
Item |
\(\{, \}\) |
braces, to contain set elements. |
Item |
\(\st\) |
“such that” |
Item |
\(\in\) |
“is an element of” |
Item |
\(\subseteq\) |
“is a subset of” |
Item |
\(\subset\) |
“is a proper subset of” |
Item |
\(\cap\) |
set intersection |
Item |
\(\cup\) |
set union |
Item |
\(\times\) |
Cartesian product |
Item |
\(\setminus\) |
set difference |
Item |
\(\bar{A}\) |
the complement of \(A\)
|
Item |
\(\card{A}\) |
cardinality (size) of \(A\)
|
Item |
\(A\times B\) |
the Cartesian product of \(A\) and \(B\)
|
Paragraph |
\(f(A)\) |
the image of \(A\) under \(f\text{.}\)
|
Paragraph |
\(f\inv(B)\) |
the inverse image of \(B\) under \(f\text{.}\)
|
Paragraph |
\(\B^n\) |
the set of length \(n\) bit strings |
Item |
\(\B^n_k\) |
the set of length \(n\) bit strings with weight \(k\text{.}\)
|
Item |
\((a_n)_{n \in \N}\) |
the sequence \(a_0, a_1, a_2, \ldots\)
|
Paragraph |
\(T_n\) |
the \(n\)th triangular number |
Item |
\(F_n\) |
the \(n\)th Fibonacci number |
Exercise 2.1.4 |
\(\Delta^k\) |
the \(k\)th differences of a sequence |
Paragraph |
\(P(n)\) |
the \(n\)th case we are trying to prove by induction |
Paragraph |
\(42\) |
the ultimate answer to life, etc. |
Paragraph |
\(\therefore\) |
“therefore” |
Paragraph |
\(K_n\) |
the complete graph on \(n\) vertices |
Paragraph |
\(K_n\) |
the complete graph on \(n\) vertices. |
Item |
\(K_{m,n}\) |
the complete bipartite graph of \(m\) and \(n\) vertices. |
Item |
\(C_n\) |
the cycle on \(n\) vertices |
Item |
\(P_n\) |
the path on \(n+1\) vertices |
Item |
\(\chi(G)\) |
the chromatic number of \(G\)
|
Paragraph |
\(\Delta(G)\) |
the maximum degree in \(G\)
|
Paragraph |
\(\chi'(G)\) |
the chromatic index of \(G\)
|
Paragraph |
\(N(S)\) |
the set of neighbors of \(S\text{.}\)
|
Paragraph |