Skip to main content
\(\renewcommand{\d}{\displaystyle} \newcommand{\N}{\mathbb N} \newcommand{\B}{\mathbf B} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\U}{\mathcal U} \newcommand{\pow}{\mathcal P} \newcommand{\inv}{^{-1}} \newcommand{\st}{:} \renewcommand{\iff}{\leftrightarrow} \newcommand{\Iff}{\Leftrightarrow} \newcommand{\imp}{\rightarrow} \newcommand{\Imp}{\Rightarrow} \newcommand{\isom}{\cong} \renewcommand{\bar}{\overline} \newcommand{\card}[1]{\left| #1 \right|} \newcommand{\twoline}[2]{\begin{pmatrix}#1 \\ #2 \end{pmatrix}} \newcommand{\vtx}[2]{node[fill,circle,inner sep=0pt, minimum size=4pt,label=#1:#2]{}} \newcommand{\va}[1]{\vtx{above}{#1}} \newcommand{\vb}[1]{\vtx{below}{#1}} \newcommand{\vr}[1]{\vtx{right}{#1}} \newcommand{\vl}[1]{\vtx{left}{#1}} \renewcommand{\v}{\vtx{above}{}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Discrete Mathematics:
An Open Introduction, 3rd edition
Oscar Levin
🔍
x
Search Results:
No results.
Contents
Index
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Colophon
Dedication
Acknowledgements
Preface
How to use this book
0
Introduction and Preliminaries
What is Discrete Mathematics?
Mathematical Statements
Sets
Functions
1
Counting
Additive and Multiplicative Principles
Binomial Coefficients
Combinations and Permutations
Combinatorial Proofs
Stars and Bars
Advanced Counting Using PIE
Chapter Summary
2
Sequences
Describing Sequences
Arithmetic and Geometric Sequences
Polynomial Fitting
Solving Recurrence Relations
Induction
Chapter Summary
3
Symbolic Logic and Proofs
Propositional Logic
Proofs
Chapter Summary
4
Graph Theory
Definitions
Trees
Planar Graphs
Coloring
Euler Paths and Circuits
Matching in Bipartite Graphs
Chapter Summary
5
Additional Topics
Generating Functions
Introduction to Number Theory
Backmatter
A
Selected Hints
B
Selected Solutions
C
List of Symbols
Index
Colophon
Authored in PreTeXt
Colophon
Colophon
This book was authored in PreTeXt.