Skip to main content
Contents Index
Embed
Dark Mode Prev Up Next
\(\usepackage{cancel}
\def\d{\displaystyle}
\def\N{\mathbb N}
\def\B{\mathbf B}
\def\Z{\mathbb Z}
\def\Q{\mathbb Q}
\def\R{\mathbb R}
\def\C{\mathbb C}
\def\U{\mathcal U}
\def\x{\mathbf{x}}
\def\y{\mathbf{y}}
\def\X{\mathcal{X}}
\def\Y{\mathcal{Y}}
\def\pow{\mathcal P}
\def\inv{^{-1}}
\def\st{:}
\def\iff{\leftrightarrow}
\def\Iff{\Leftrightarrow}
\def\imp{\rightarrow}
\def\Imp{\Rightarrow}
\def\isom{\cong}
\def\bar{\overline}
\def\card#1{\left| #1 \right|}
\def\twoline#1#2{\begin{pmatrix}#1 \\ #2 \end{pmatrix}}
\def\mchoose#1#2{
\left.\mathchoice
{\left(\kern-0.48em\binom{#1}{#2}\kern-0.48em\right)}
{\big(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\big)}
{\left(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
{\left(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
\right.}
\def\o{\circ}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Worksheet Preview Activity
If
\(a b\) is an even number, then
\(a\) or
\(b\) is even.
Which of the proofs below appear to be valid proofs of this statement? Note: You can assume all the algebra below is correct (because it is).
1.
Suppose \(a\) and \(b\) are odd. That is, \(a=2k+1\) and \(b=2m+1\) for some integers \(k\) and \(m\text{.}\) Then
\begin{align*}
ab \amp =(2k+1)(2m+1)\\
\amp =4km+2k+2m+1\\
\amp =2(2km+k+m)+1\text{.}
\end{align*}
2.
Assume that \(a\) or \(b\) is even -- say it is \(a\) (the case where \(b\) is even will be identical). That is, \(a=2k\) for some integer \(k\text{.}\) Then
\begin{align*}
ab \amp =(2k)b\\
\amp =2(kb)\text{.}
\end{align*}
3.
Suppose that \(ab\) is even but \(a\) and \(b\) are both odd. Namely, \(ab = 2n\text{,}\) \(a=2k+1\) and \(b=2j+1\) for some integers \(n\text{,}\) \(k\text{,}\) and \(j\text{.}\) Then
\begin{align*}
2n \amp =(2k+1)(2j+1)\\
2n \amp =4kj+2k+2j+1\\
n \amp = 2kj+k+j+\frac{1}{2}\text{.}
\end{align*}
But since
\(2kj+k+j\) is an integer, this says that the integer
\(n\) is equal to a non-integer, which is impossible.
4.
Let \(ab\) be an even number, say \(ab=2n\text{,}\) and \(a\) be an odd number, say \(a=2k+1\text{.}\)
\begin{align*}
ab \amp =(2k+1)b\\
2n \amp =2kb+b\\
2n-2kb\amp =b\\
2(n-kb)\amp =b\text{.}
\end{align*}
Therefore
\(b\) must be even.
5.
Which of the proofs above are valid proofs of the statement?